Improving the Stability and Accuracy of Power Hardware-in-the-Loop Simulation Using Virtual Impedance Method
نویسندگان
چکیده
Abstract: Power hardware-in-the-loop (PHIL) systems are advanced, real-time platforms for combined software and hardware testing. Two paramount issues in PHIL simulations are the closed-loop stability and simulation accuracy. This paper presents a virtual impedance (VI) method for PHIL simulations that improves the simulation’s stability and accuracy. Through the establishment of an impedance model for a PHIL simulation circuit, which is composed of a voltage-source converter and a simple network, the stability and accuracy of the PHIL system are analyzed. Then, the proposed VI method is implemented in a digital real-time simulator and used to correct the combined impedance in the impedance model, achieving higher stability and accuracy of the results. The validity of the VI method is verified through the PHIL simulation of two typical PHIL examples.
منابع مشابه
Voltage Imbalance Compensation for Droop-Controlled Inverters in Islanded Microgrid
In this paper, a new control strategy is proposed for implementation in low-voltage microgrids with balanced/ unbalanced load circumstances. The proposed scheme contains, the power droop controllers, inner voltage and current loops, the virtual impedance loop, the voltage imbalance compensation. The proposed strategy balances the voltage of the single-phase critical loads by compensating the im...
متن کاملکنترل افتی-تطبیقی مبتنی بر امپدانس مجازی به منظور بهبود تسهیم توان راکتیو در ریزشبکههای اینورتری
With recent advances in power-electronics, inverter-based microgrids are gaining great attention. Droop control is one of the main methods to share the real and reactive power among distributed energy resources (DERs) in an islanded microgrids. Due to different characteristics of microgrid feeders, reactive power sharing is not fully accurate and consequently, some DERs may face overload. To ad...
متن کاملA New Approach for Voltage Balancing and Appropriate Power-Sharing in Autonomous Microgrids
This paper suggests a new control method to modify the virtual impedance performance in unbalanced conditions. The proposed method compensates the voltage drop that occurred due to the virtual impedance and adjusts the voltage of the point of common coupling at a desirable level. To compensate the voltage drop, the reference voltage in the droop control varies according to the proposed algorith...
متن کاملA Coordinated Control Scheme for Improving Voltage Quality Using Power Electronics Interfaced DGs
Recently, increasing of non-linear loads in the power distribution network has been increased harmonics in these networks. The harmonics problems get worse and complicated by installation of power factor correction capacitors and filters. But the Distributed Generations (DGs) interface inverters with properly control can help to improve power quality, harmonic compensation and voltage unbalance...
متن کاملDistance protection closed-loop testing using RTDS
This paper presents a distance protection test procedure by applying the Real-Time Digital Simulator (RTDS) of a power system. RTDS is a tool to design, develop, and test power-system protection. The RTDS enables real-time computation of electromagnetic phenomena with a calculation time step of even 50μs. The hardware allows the import and export of many signals from the simulator to an ext...
متن کامل